Quiz Cover

Math for Machine Learning - Chapter 4 :Dot Product and Geometric Interpretations

Created by Shiju P John ยท 11/5/2025

๐Ÿ“š Subject

Math for Machine Learning

๐ŸŽ“ Exam

Any

๐Ÿ—ฃ Language

English

๐ŸŽฏ Mode

Practice

๐Ÿš€ Taken

0 times

Verified:

No. of Questions

36

Availability

Free


๐Ÿ“„ Description

This expert-level quiz delves into the dot product, a fundamental operation bridging algebra and geometry in machine learning. It is designed to test your deep understanding of its properties, geometric interpretations, and applications. Questions will challenge your ability to work with projections, orthogonality, angles between high-dimensional vectors, and the connection between the dot product and concepts like cosine similarity and hyperplanes. Mastery of this topic is crucial for understanding algorithms ranging from Support Vector Machines (SVM) to neural network operations and recommendation systems.

Key Formulas:

  • Algebraic Dot Product: aโ‹…b=โˆ‘i=1naibi=aTb\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i = \mathbf{a}^T \mathbf{b}

  • Geometric Dot Product: aโ‹…b=โˆฅaโˆฅโˆฅbโˆฅcosโก(ฮธ)\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos(\theta)

  • Vector Projection of b\mathbf{b} onto a\mathbf{a}: proja(b)=(bโ‹…aโˆฅaโˆฅ2)a\text{proj}_{\mathbf{a}}(\mathbf{b}) = \left( \frac{\mathbf{b} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \right) \mathbf{a}

  • Scalar Projection of b\mathbf{b} onto a\mathbf{a}: compa(b)=bโ‹…aโˆฅaโˆฅ\text{comp}_{\mathbf{a}}(\mathbf{b}) = \frac{\mathbf{b} \cdot \mathbf{a}}{\|\mathbf{a}\|}

  • Cosine Similarity: cosโก(ฮธ)=aโ‹…bโˆฅaโˆฅโˆฅbโˆฅ\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}

  • Orthogonality Condition: aโ‹…b=0\mathbf{a} \cdot \mathbf{b} = 0

๐Ÿท Tags

#Dot Product#Linear Algebra#Machine Learning#Vector Geometry#Orthogonality#Projections#Cosine Similarity

โฑ๏ธ Timed Mode Options

Choose Timing Mode

๐Ÿค Share Results

๐Ÿ”€ Question Options