Quiz Cover

3Blue1Brown: 3D Transformations - Chapter 5 Quiz

Created by Shiju P John ยท 10/14/2025

๐Ÿ“š Subject

Linear Algebra

๐ŸŽ“ Exam

Any

๐Ÿ—ฃ Language

English

๐ŸŽฏ Mode

Practice

๐Ÿš€ Taken

1 times

Verified:

No. of Questions

22

Availability

Free


๐Ÿ“„ Description

This quiz delves into the fundamental concepts of three-dimensional linear transformations as presented in the 3Blue1Brown "Essence of Linear Algebra" series, specifically Chapter 5. It tests your understanding of how 2D linear algebra principles extend to 3D space, the role of basis vectors in defining transformations, matrix representation of these transformations, and the mechanics of vector and matrix multiplication in three dimensions. Expect questions that require critical thinking, application of theoretical knowledge, and a strong grasp of vector and matrix operations.

Important Formulae:

  • Standard basis vectors in 3D:
    • i^=(100)\hat{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}
    • j^=(010)\hat{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}
    • k^=(001)\hat{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
  • Representation of a vector vโƒ—\vec{v} in terms of basis vectors:
    • vโƒ—=(xyz)=xi^+yj^+zk^\vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x\hat{i} + y\hat{j} + z\hat{k}
  • Matrix representation of a 3D linear transformation TT:
    • If T(i^)=(a11a21a31)T(\hat{i}) = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix}, T(j^)=(a12a22a32)T(\hat{j}) = \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix}, and T(k^)=(a13a23a33)T(\hat{k}) = \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix}, then the transformation matrix AA is: A=(a11a12a13a21a22a23a31a32a33)A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}
  • Applying a transformation TT to a vector vโƒ—\vec{v} (Matrix-Vector Multiplication):
    • T(vโƒ—)=Avโƒ—T(\vec{v}) = A\vec{v}
    • Avโƒ—=(a11a12a13a21a22a23a31a32a33)(xyz)=x(a11a21a31)+y(a12a22a32)+z(a13a23a33)=(a11x+a12y+a13za21x+a22y+a23za31x+a32y+a33z)A\vec{v} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} + y \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix} + z \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix} = \begin{pmatrix} a_{11}x + a_{12}y + a_{13}z \\ a_{21}x + a_{22}y + a_{23}z \\ a_{31}x + a_{32}y + a_{33}z \end{pmatrix}
  • Composition of transformations (Matrix-Matrix Multiplication):
    • If T1T_1 is represented by matrix AA and T2T_2 by matrix BB, then applying T2T_2 first, then T1T_1, is represented by the matrix product ABAB.
    • For 3ร—33 \times 3 matrices A=[aij]A = [a_{ij}] and B=[bij]B = [b_{ij}], the element (AB)ij(AB)_{ij} is the dot product of the ii-th row of AA and the jj-th column of BB.
    • (AB)ij=โˆ‘k=13aikbkj(AB)_{ij} = \sum_{k=1}^3 a_{ik}b_{kj}

๐Ÿท Tags

#7fa4facb-536e-4e6d-a193-3f5262d4a8ac

๐Ÿ”— Resource

https://www.youtube.com/watch?v=kYB8IZa5AuE

โฑ๏ธ Timed Mode Options

Choose Timing Mode

๐Ÿค Share Results

๐Ÿ”€ Question Options